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Slow crack growth analysis of brittle materials
with finite thickness subjected to constant
stress-rate flexural loading
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A two-dimensional, numerical analysis of slow crack growth (SCG) was performed for
brittle materials with finite thickness subjected to constant stress-rate (”dynamic fatigue”)
loading in flexure. The numerical solution showed that the conventional, simple,
one-dimensional analytical solution can be used with a maximum error of about 5% in
determining the SCG parameters of a brittle material with the conditions of a normalized
thickness (a ratio of specimen thickness to initial crack size) T >3.3 and of a SCG parameter
n≥10. The change in crack shape from semicircular to elliptical configurations was
significant particularly at both low stress rate and low T , attributed to predominant
difference in stress intensity factor along the crack front. The numerical solution of SCG
parameters was supported within the experimental range by the data obtained from
constant stress-rate flexural testing for soda-lime glass microslides at ambient
temperature. C© 1999 Kluwer Academic Publishers

1. Introduction
Constant stress-rate (also called “dynamic fatigue”)
testing has been utilized for several decades to quantify
the slow crack growth behavior of glass and ceramic
materials at both ambient and elevated temperatures
[1–7]. The merit of constant stress-rate testing over
other methods lies in its simplicity: Strengths are de-
termined in a routine manner at four to five stress rates
by applying constant crosshead speeds (displacement-
control) or constant loading rates (load-control). The
slow crack growth (SCG) parameters required for life
prediction/reliability are simply calculated from a rela-
tionship between failure strength and stress rate. Be-
cause of its advantages, constant stress-rate flexural
testing has been developed as an ASTM test standard
(C 1368) to determine SCG parameters of advanced
ceramics at ambient temperature [8].

The slow crack growth analysis of brittle materi-
als containing surface cracks under constant stress-rate
loading condition has been made for the natural flaw
system [1] as well as the indentation-induced flaw sys-
tems [9–11]. In both cases, the typical assumption in
the analyses was that critical crack sizes at failure, after
subsequent slow crack growth, are much smaller than
specimen size, considering the specimen as an infinite
body as compared to crack sizes. In reality, however, the
crack sizes cannot be always small relative to the speci-
men sizes, particularly for finite, thin specimens such as
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glass microslides (≤1 mm thick) or thin ceramic plates.
This is especially true for a material exhibiting a high
SCG susceptibility (i.e., with a low SCG parameter of
n<20): The critical crack size at high stress rates of the
order of 101 to 102 MPa/s may be small with respect to
the specimen thickness; whereas, the critical crack size
at low stress rates of the order of 10−2 to 10−3 MPa/s
would be more comparable to the specimen thickness,
due to enhanced slow crack growth.

Furthermore, at these low stress rates particularly
in flexure, the stress intensity factor at the crack sur-
face would be greater than that at the crack depth (due
to a stress gradient through the thickness), resulting
in a faster crack growth in the surface than in the
depth direction. As a result, a change in crack shape
into an elliptical crack configuration is inevitable. The
solution in this case requires a two-dimensional, nu-
merical slow-crack growth approach in which each
individual crack velocity is to be specified at each
individual crack front, coupled with the correspond-
ing time-varying stress intensity factor. Such a two-
dimensional analysis, however, has not been yet applied
to finite, thin glass or ceramic specimens subjected to
constant stress-rate condition. Only conventional, one-
dimensional, infinite-body analytical solution has been
commonly utilized [1–11].

The main objective of this work was to investigate an-
alytically (numerically) how finite specimen thickness
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relative to crack size has an effect on the determina-
tion of SCG parameters in constant stress-rate loading
in flexure. A two-dimensional numerical analysis was
performed to determine both SCG parameters and crack
shape. Four different specimen thicknesses with re-
spect to initial crack sizes were used in the analysis.
Limited constant stress-rate (“dynamic fatigue”) test-
ing were conducted in flexure using thin sodalime glass
microslides with four different sizes of surface cracks
in order to compare the numerical solution with exper-
imental data.

2. Analysis
In many cases, slow crack growth of glass and ceram-
ics under mode I loading above the fatigue limit is de-
scribed by the following empirical power-law relation
[12]:

v = da

dt
= A

(
KI

KIC

)n

(1)

wherev, a, t are crack velocity, crack size, and time,
respectively.A and n are the material/environment-
dependent SCG parameters.KI is the mode I stress
intensity factor (SIF), andKIC is the critical stress in-
tensity factor or fracture toughness of the material, sub-
jected to mode I loading. Under constant stress-rate
(“dynamic fatigue”) loading using either constant dis-
placement rate or constant loading rate, the correspond-
ing failure strength (σf ) based on an infinite-body as-
sumption can be derived as a function of stress rate ( ˙σ )
as follows [1]:

σf =
[
B(n+ 1)σ n−2

m

]1/(n+1)
σ̇ 1/(n+1) (2)

whereB=2K 2
IC/AÄ2(n−2) withÄ being a crack ge-

ometry factor in the expression ofKI =Äσ√a with
σ being a remote applied stress, andσm is the inert
strength. By taking the logarithm both sides of Equa-
tion 2 yields

logσf = 1

n+ 1
log σ̇ + log D (3)

where logD= [1/(n+1)] log[B(n+1)σ n−2
m ]. The

SCG parametern can be obtained from the slope of
Equation 3 by using a linear regression analysis of
logσf versus log ˙σ . The parameterA is determined from
the intercept (D) together with appropriate constants.
Equation 2 is the commonly utilized, one-dimensional
SCG (“dynamic fatigue”) solution for the “infinite”
body where stress intensity factor along the crack front
is uniform at a given time during crack growth.

The stress-intensity factor solution for a surface crack
in a plate with finite thickness (see Fig. 1) has been de-
veloped by Newman and Raju [13], and has been widely
used to determine fracture toughness of materials and
fatigue crack growth for metallic materials. The result-
ing stress intensity factor for flexure load is

KI = Hσ

√
πa

Q
F

(
a

w
,

a

c
,

c

b
, φ

)
(4)

(a)

(b)

Figure 1 Crack geometry: (a) surface crack configuration in a finite
specimen; (b) a surface crack during slow crack growth representing
crack velocities at the surface (at ‘S’) and at the depth (at ‘B’).

for 0≤a/w<1.0, 0≤a/c≤1.0, c/b<0.5 and 0≤
φ≤π . σ is the remote outer-fiber flexural stress. The
functionsH , Q andF are complex in expression, and
are dependent on crack geometry and specimen dimen-
sions (see Appendix). A new crack geometry factor,Y,
was used for simplicity as follows:

Y ≡ H F√
Q

(5)

The slow crack velocity for a given material/ environ-
ment condition depends on stress intensity factor as
shown in Equation 1. For an infinite body the crack
velocity of a semicircular surface crack is all the same
along the crack front. However, as the crack length be-
comes comparable to the specimen thickness, the stress
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intensity factor is no longer identical along the crack
front: The maximum and minimum stress intensity fac-
tors occur, respectively, at the surface and at the depth,
due to the stress gradient through the specimen thick-
ness [13]. This gives rise to a change in crack velocity
at the crack front, resulting in crack-shape change (into
an ellipse) during slow crack growth. Based on Equa-
tion 1, the individual crack velocities both at the surface
(at ‘S’) and the depth (at ‘B’) of a crack (see Fig. 1b)
can be expressed

vS = dc

dt
= A

(
KIS

KIC

)n

(6)

vB = da

dt
= A

(
KIB

KIC

)n

wherevS andvB are the crack velocities at the surface
and at the depth, respectively, andKIS andKIB are the
SIF’s at the surface and at the depth. The SCG parame-
tersn andAcan be assumed invariant since the parame-
ters are the constants for a given material/environment
system. From Equations 4 and 5, the corresponding
stress intensity factors at the surface and the depth
become

KIS = Y(φ = 0)σ
√
πa

(7)

KIB = Y

(
φ = π

2

)
σ
√
πa

The critical stress intensity factor for a semicircular
crack can be expressed using Equations 4 and 5 with
φ=0 (where a maximum SIF occurs) as follows:

KIC = Ym(φ = 0)σm
√
πam (8)

whereYm andam are, respectively, crack geometry fac-
tor and crack depth in the inert condition whereby no
slow crack growth occurs. Hence,am corresponds to
the initial crack size.

The analytical solution of Equations 6 and 7 in terms
of failure strength as a function of stress rate is not feasi-
ble because of two-dimensional crack growth, coupled
with a great complexity of the time-varying stress inten-
sity factors associated withY (see Appendix) as a crack
grows. A two-dimensional solution has to be made via
numerical methods. To minimize the number of param-
eters to be specified (such asA, am, a, c,σm,σ , KIC and
t , etc.), it is convenient to utilize a normalized scheme,
as used previously in the one-dimensional, slow-crack
growth analysis of indentation-induced flaws [9, 11].
The normalized variables for the two-dimensional anal-
ysis were used as follows:

K ∗S =
KIS

KIC
; K ∗B =

KIB

KIC
; J = A

am
t ; σ = σ

σm
;

(9)
CS = c

am
; CB = a

am
; σ̇ ∗ = σ ∗

J

whereK ∗S, K ∗B, J, σ ∗, CS, CB andσ̇ ∗ are, respectively,
normalized stress intensity factors (at points ‘S’ and
‘B’ in Fig. 1b), normalized time, normalized applied

stress, normalized crack sizes (at points ‘S’ and ‘B’),
and normalized stress rate. Using these variables, the
normalized stress intensity factors and the normalized
crack velocities at both points yield

dCB

dJ
= [K ∗B]n

dCS

dJ
= [K ∗S]n

(10)

K ∗B =
Y(φ=π/2)

Ym
σ̇ ∗JC1/2

B

K ∗S =
Y(φ=0)

Ym
σ̇ ∗JC1/2

B

The solutions of these equations including two simul-
taneous differential equations, in terms of normalized
variables such as strength, failure time and crack sizes,
were obtained by using the fourth-order Runge-Kutta
method for a givenn and stress rate ( ˙σ ∗). The two-
dimensional analysis was performed for the crack to si-
multaneously grow both in the surface and in the depth
directions, coupled at any instant of time with the ge-
ometry factorY. The solution procedure was initiated to
determine the normalized strength as a function of nor-
malized stress rate for the selected values ofn=5–160.
A range of normalized stress rates from ˙σ ∗ =1.0×102

to 1.0×10−7 was used. The initial condition wasCS=
CB=1, that is, the crack starts growing from a semi-
circular crack configuration (c/a=1). The instability
conditions wereK ∗S=1 or K ∗B=1, whichever occurs
first, and dK ∗S/dCS>0 or dK ∗B/dCB>0. A set of four-
different, normalized specimen thicknesses was used
in the analysis:T =2, 3.3, 10 and∞, whereT is the
normalized thickness in which the specimen thickness
(w) was normalized with respect to the initial crack size
(ai ) as follows:

T = w

ai
(11)

The program can be readily incorporated into the one-
dimensional analysis once it is set tovS= vB. The fol-
lowing are the numerical results regarding strength vs.
stress rate, SCG parameters, and crack shape.

2.1. Strength versus stress rate
A summary of the numerical solution of normalized
strength (logσ ∗f ) as a function of normalized stress rate
(log σ̇ ∗) in flexure is shown in Fig. 2. The figure is for a
set of four different, normalized specimen thicknesses
of T =2, 3.3, 10 and∞. Belowσ̇ ∗ =10−1, there exists
a linear relationship between logσ ∗f and logσ̇ ∗ for each
n. Aboveσ̇ ∗ =101, the strength converges toσ ∗f =1 in
which the inert strength is defined. It was found that
for the infinite body (T =∞) the solution exhibited
no difference between the conventional, 1-D analysis
(Equation 3) and the numerical two-dimensional anal-
ysis, sinceKIS= KIB with a/c=1 during the whole
period of slow crack growth.

For n≥20, the curves among the fourT ’s have no
significant difference in slope and intercept. However,
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Figure 2 Results of the numerical solutions of normalized strength (σ ∗f )
as a function of normalized stress rate ( ˙σ ∗) in flexure for different levels
of normalized specimen thickness (T).

for n≤10, representing a condition of high SCG sus-
ceptibility, the deviation from the curve forT =∞
is amplified with both decreasing specimen thickness
T and decreasingn. This is ascribed to the acceler-
ated crack growth in which the crack deptha becomes
quickly comparable to the specimen thickness. The
lower limit of σ̇ ∗, σ̇ ∗L , below which no solution ex-
ists, corresponds to the condition ofCB≈ T (or a≈w)
where a part-through crack configuration forms. The
values of ˙σ ∗L , critical for n≤10, can be found from
Fig. 1. For n=10, σ̇ ∗L ≈10−4, 10−5, and 10−7, re-
spectively, forT =2, 3.3 and 10; whereas, forn=5,
σ̇ ∗L ≈10−2, 10−3, and 10−4. Therefore, the common use
of at least four stress-rates, usually one decade apart,
with a condition of ˙σ ∗ ≤10−1 is limited for the cases
of n≤5 andT ≤3.3.

2.2. Slow crack growth parameters
As seen in Fig. 2, below ˙σ ∗ =10−1, there exists a lin-
ear relationship between logσ ∗f and log σ̇ ∗. Hence,
analogous to the conventional infinite-body relation,
Equation 3, a relationship can be expressed as follows
[9, 11]:

logσ ∗f =
1

n′ +1
log σ̇ ∗ + log I (12)

wheren′ is the ‘apparent’ SCG parameter andI is the
intercept. The ‘apparent’ SCG parametern′ was deter-
mined from the slope of the data in Fig. 2 by a linear
regression analysis of logσ ∗f versus log ˙σ ∗, based on
Equation 12. The resulting plot of the ‘apparent’ SCG
parametern′ as a function ofn is shown in Fig. 3a. The
variation inn′ from n was greater forn≤10 and is in-
creased with both decreasingT and decreasingn. The
variation inn′ was defined as1n= (n′ −n)/n. A sum-
mary of1n as a function ofn for differentT ’s is shown
in Table I. Forn=5, 1n=54, 41 and 22%, respec-
tively, for T =2, 3.3 and 10. Forn=10,1n=14, 9
and 5%, respectively, forT =2, 3.3 and 10. Forn≥20,
the variation inn′was negligibly small with a maximum
value of 4%, occurring forT =2.

TABLE I The deviations (1n and1I ) in slow crack growth parame-
tersn′ and I

True slow crack growth parametern
Normalized
specimen thickness,T 5 10 20 40 80 160

(a)1n

2 0.54 0.14 0.04 0.02 0.01 0.01
3.3 0.41 0.09 0.03 0.02 0.01 —
10 0.22 0.05 0.02 0.01 — —
∞ — — — — — —

(b)1I

2 −0.12 −0.02 −0.02 −0.01 — —
3.3 −0.10 −0.01 −0.01 — — —
10 −0.09 −0.01 — — — —
∞ — — — — — —

(a)

(b)

Figure 3 Results of the numerical solutions of slow crack growth pa-
rameters as a function ofn in flexure for different levels of normalized
specimen thickness (T): (a) forn′ and (b) for logI .

A summary of the intercept based on the data in
Fig. 2 and Equation 12 is shown in Fig. 3b and Table I.
The overall variation inI from the solution forT =∞,
1I = (IT=∞ − I )/I , was less insignificant, compared
to1n. For n=5, the variation is1I =12, 10 and 9%
(all negative), respectively, forT =2, 3.3 and 10. For
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n≥10, the variation was negligible for allT ’s with a
maximum value of−2%.

From the results shown in Fig. 3 and Table I, it is
evident that in order to maintain a maximum variation
of less than 10% in bothn and I with at least four
stress rates one must use the conditions ofn≥10 and
T ≥3.3. For a maximum variation of 5%, the condi-
tions ofn≥10 andT ≥10 must be fulfilled. In case of
n≥20, one can use thin specimens withT =2.0 (the
initial crack size is 50% of the specimen thickness) with
an error of about 4%. Since most glasses at ambient
temperature and many advanced ceramics at elevated
temperatures exhibitn≥20, the specimens fabricated
from those materials containing initial crack sizes of
50% of the specimen thickness can be used to deter-
mine the SCG parameters with an error of 4% using
the conventional, simple (1-D infinite-body) analytical
solution (Equation 2 or 3).

2.3. Crack shapes
Typical examples of the numerical solution of criti-
cal crack size and its shape at failure are depicted in
Fig. 4. The figure is for the cases ofn=10 and 20 with
T =10. Both the aspect ratioa/c and the crack-depth
to specimen-thickness ratioa/wwere plotted as a func-
tion of stress rate. The change in crack shape from the
initial semicircle (a/c=1.0) to ellipse is insignificant
at higher stress rates. However, the change is signifi-
cant at lower stress rates with decreasingn, attributed
to enhanced slow crack growth. The correspondinga/w
ratio increases with both decreasing stress rate and de-
creasingn. The crack depth at failure, for example,
reaches about 80% of the specimen thickness for the
case of extended slow crack growth, which is forn=10
at σ̇ ∗ =1×10−6.

A more detailed description of the accompanying
crack-shape changeduring slow crack growthis shown
in Fig. 5, where the aspect ratio (a/c) was plotted as
a function of normalized time (J) for the cases ofn=10
and 20 withT =10. Two stress rates, ˙σ ∗ =1×10−3

and 1×10−6, were considered in the analysis. At
1×10−3, the initial semicircular crack grows to a
slightly elliptical configuration witha/c= 0.85 for

Figure 4 Results of the numerical solutions of crack configurations (a/c
anda/w) at failure as a function of stress rate in flexure forn=10 and
20 with a normalized specimen thickness ofT =10.

(a)

(b)

Figure 5 Results of the numerical solutions of crack growth (aspect
ratio= a/c) as a function of normalized test time (J) in flexure with
a normalized specimen thickness ofT =10 for n=10 and 20: (a) For
σ̇ ∗ =1×10−3; (b) For σ̇ ∗ =1×10−6.

n=20; whereas, the crack grows considerably ellip-
tical to a value ofa/c=0.67 for n=10. The trend
for 1×10−6 is similar; however, the ellipticity is much
more magnified, compared to that for 1×10−3 because
of extended slow crack growth. The resulting elliptic-
ity at failure for 1×10−6 amounts toa/c=0.53 and
0.15, respectively, forn=20 and 10. It is noted from
Fig. 5 that the initial crack grows very little during most
of testing time, but grows instantaneously close to the
failure time at which failure strength is defined. A long
incubationtime of an initial crack is a unique aspect
for slow crack growth behavior of most brittle materi-
als subjected to constant stress-rate testing [7].

For a given material/environment condition, the
change in shape of an initial semicircular crack during
slow crackgrowth isdependenton stress intensity factor
at its crack front. In flexure, the stress gradient through
specimen thickness is significant so that the stress in-
tensity factor is smaller at the depth than at the surface
when the crack length due to SCG increases toward
the specimen thickness. This results in a faster crack
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growth in the surface than in the depth direction, giving
rise to the crack with an elliptical crack configuration.
The ellipticity is more enhanced as the crack grows
close to the bottom of the specimen (see Figs 4 and 5),
with both decreasing stress rate and decreasingn. It
is important to note that despite a significant change
in crack shape during slow crack growth, the SCG pa-
rameters determined by the 2-D, finite-body numerical
solution do not noticeably differ from those by the sim-
ple, 1-D, infinite-body analytical solution (Equation 3)
for most glass and advanced ceramics (n≥20) provided
thatT ≥2, as aforementioned in Section 2.2.

3. Experimental
In order to compare the numerical solutions with ex-
perimental data, constant stress-rate flexural (“dynamic
fatigue”) testing was conducted with soda-lime glass
microslides in distilled water at room temperature. The
glass microslides were used since this material exhibits
a somewhat high SCG susceptibility (n≈20) in a moist
environment and since the microslides provide an ideal
thin plate configuration with low cost. The nominal di-
mensions of the glass microslides (No. 2954-F, Erie
Scientific Co., Portsmouth, NH) were 1.2 mm by 25 mm
by 75 mm, respectively, in thickness, width and length.
Controlled-surface cracks were produced at the center
of each specimen using a Vickers microhardness in-
denter (Model 3212, Zwick, Germany) with one of the
indentation diagonals oriented along the direction of the
prospective tensile stress of the specimen. Four differ-
ent indentation loads ranging fromP=2 to 98 N were
used. In order to avoid any complexity associated with
the residual contact stresses produced by elastic/plastic
indentation deformation, all the as-indented specimens
were annealed at 520◦C in air for 20 h to remove the
residual stresses.

Constant stress-rate testing for the indented-and-an-
nealed specimens was carried out in an electromechani-
cal testing machine (Model 8562, Instron, Canton, MA)
using a stainless-steel, four-point flexure fixture with
20 mm-inner and 40 mm outer spans. Three to five
stroke rates in displacement control, ranging typically
from 0.0005 to 50 mm/min, corresponding to stress
rates from 2.2×10−3 to 220 MPa/s, were employed at
each indentation load. A total of four specimens were
used at each test rate. This number of test specimens,
four at each test rate, was considered statistically suf-
ficient since the strength scatter (=coefficient of varia-
tion) exhibited less than 5%. The inert strength for each
indentation load was also determined using silicon oil
at a fast stress rate of 220 MPa/s.

From the indentation-fracture analysis [9] using
KIC=0.76 MPa

√
m and other known parameters [14],

the normalized specimen thickness (Equation 11) was
determined to beT ≈ 70, 40, 10, and 5, respectively,
for the indentation loads ofP=2, 5, 39 and 98 N. It
was observed that aboveP=98 N the indent cracks
tended to form more palmqvist or elliptical crack con-
figurations (frequently with spalling) than semicircu-
lar, so that the indent load ofP=98 N was considered
as a maximum load to produce semicircular surface
radial/median crack configurations. Therefore, it was

not possible in this experiment to achieve a normalized
specimen thickness of less than 5 (e.g.,T <5), although
the numerical analysis was covered up toT =2.

4. Results and discusssion
A summary of the constant stress-rate flexural testing
results for the soda-lime glass microslides with four
differentT ’s is shown in Fig. 6. The decrease in failure
strength with decreasing stress rate, which represents
the susceptibility to slow crack growth, was evident for
all the normalized specimen thicknesses. The values of
the SCG parametern, determined by a linear regres-
sion analysis of logσf versus log ˙σ based on Equa-
tion 3, weren=19.0±2.2, 19.9±2.4, 20.0±0.5 and
17.0±1.4, respectively, forT =70, 40, 10 and 5 (or
for P=2, 5, 39 and 98 N).

An additional numerical analysis usingn=19.0
showed that there was no difference in SCG param-
eters (n and I ) between the infinite-body (T =∞) and
the finite-body (T =70) solutions. Therefore, the ex-
perimental data obtained fromT =70 can be regarded
as those for the infinite-body condition, free from any
effects on specimen thickness. Using Equations 2, 9 and
12 together withn (=19), I and appropriate parameters
for T =70, the SCG parameterA was determined to be
A=1.6×10−3 m/s. Now using the determinedA and
the value ofI obtained numerically for eachT with
n=19.0, one can predict from Equations 2, 9 and 12
failure strength as a function of stress rate forT =40,
10 and 5.

The resulting prediction is shown in Fig. 6 with the
dotted lines. The difference inn between the experi-
mental data and the prediction (n=19.0) was 5, 5, and
−11%, respectively, forT =40, 10 and 5; whereas,
the respective difference in intercept was 2, 3, and
2%. Although the experimental value ofn=17.0 for
T =5 is a little lower than the values ofn=19–20
for T ≥10 resulting in a difference of about 10%, the

Figure 6 Results of constant stress-rate flexural testing for indented-
and-annealed soda-lime glass microslides with four different normal-
ized specimen thicknesses fromT =5 to 70 (corresponding indentation
loads fromP=2 to 98 N) in room-temperature distilled water. The solid
lines indicate the best-fit lines based on Equation 3; whereas, the dotted
lines represent the predicted lines based on the data forT =70. Error bar
represents± one standard deviation (the error bars smaller than sym-
bols were omitted for clarity). The inert strengths were also plotted for
comparison.
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overall agreement between the experimental data and
the prediction is reasonable within the range of experi-
mental scatters. Note that even the average coefficient of
variation inn for eachT was about 9%. In fact, the ob-
tained values ofn=17 to 20 from this study with awide
range of indentation loads fromP=2 to 98 N, agree
well with those (n=18–20) independently determined
for soda-lime glass using primarily lower indentation
loads (P≤10 N) by other investigators [10, 15, 16].
Thus, the result shown in Fig. 6 indicates that no appre-
ciable difference in SCG parameters is evident between
the 2-D, finite-body numerical solution and the con-
ventional, simple 1-D, infinite-body analytical solution
(Equation 2).

Alternatively but approximately, the effect of speci-
men thickness (T) on SCG parameters can be examined
by constructing the universal failure strength-versus-
stress rate relation based on the indentation-fracture
analysis [15]. Multiplying both sides of Equation 2 by
P1/3 and arranging the terms yield the following rela-
tionship

σf P
1/3 = α[σ̇ P]1/(n+1) (13)

where α= [B(n+1)(σmP1/3)n−2]1/(n+1), which is
constant for a given material/environment system re-
gardless of indentation load sinceσmP1/3 is constant
according to the indentation analysis [10, 15]. An equa-
tion similar to Equation 13 has been used for the as-
indented crack system in which a residual stress field is
present about the indent [15]. The resulting plots of log
σf P1/3 as a function of log ˙σ P using the data in Fig. 6
are depicted in Fig. 7. Each symbol represents a mean
value for a total of four specimens. The solid line repre-
sents a best-fit line withn=19.0. As can be seen in the
figure, no appreciable trend for data at different indenta-
tion loads to deviate from universal behavior is evident.
This indicates that the wide range of indentation loads
from P=2 to 98 N which were used in this study to pro-
duce the range of corresponding normalized specimen
thicknesses fromT =70 to 5 resulted in no substantial
effect of the specimen thicknessT on the estimation of

Figure 7 Strength parameter (logσf P1/3) as a function of stress-rate
parameter (log ˙σ P) for four T ’s obtained from the experimental data in
Fig. 6. The solid line represents the best-fit line withn=19.

SCG parameters. (Note that based on the indentation-
fracture analysis [10, 15], the initial as-indent crack size
depends on indentation load:ai = δP3/2 with δ being a
constant. This gives a relation ofT =w/ai =w/δP3/2.
Therefore, Equation 13 can also be expressed in terms
of T by replacingP with T . The result using eitherP
or T remains the same.)

From the fracture surface examinations of specimens
tested at lower stress rates with lowT ’s, it could be
speculated that the cracks seemed to have grown to el-
liptical configurations, in view of the propagation mode
of the Wallner lines. However, in most cases, it was dif-
ficult or impossible to identify the boundary of crack
front at failure because of no clear demarcation be-
tween slow crack growth and dynamic crack propaga-
tion (mirror/mist/hackle regions), as is typical of most
glasses. The numerical calculations of crack configu-
rations at failure showed that particularly at the low-
est stress rate (=2.2×10−2 MPa/s), the aspect ratio
(a/c) was significant about 0.60 and 0.45, respectively,
for T =10 and 5, while the corresponding, respective
crack depth reached about 30 and 50% of the speci-
men thickness. The elliptical crack formation in flex-
ure has been observed more clearly for some ceramics
subjected to elevated-temperature, constant stress-rate
flexural testing, because of well-defined demarcation
of SCG region [17, 18]. The formation of a crack into
ellipticity in flexure also has been observed for metallic
specimens under cyclic fatiguing [19–21].

Because of the limited experiments conducted in
this study using soda-lime glass microslides exhibiting
n=19 withT =5–70, the obtained numerical solutions
for T =2 and 3.3 withn≤10 could not be verified with
experiment. In fact, it is rarely feasible to find a ma-
terial with n≤10 at ambient temperature since glass,
known most susceptible to slow crack growth, exhibits
as much asn≈20. Although not certain, an alternative
to approach such extreme conditions ofn≤10 with
T <5 would be to utilize ceramics atelevated tem-
peratureswith an appropriate combination of mate-
rial/thickness/test temperature under the condition that
the material follows the power-law SCG, Equation 1.
The most important conclusion drawn from this study is
that in spite of the significant change in crack shape dur-
ing slow crack growth in flexure, the conventional sim-
ple, one-dimensional infinite-body analytical solution
(Equation 2 or 3) can be used with a reasonable accuracy
to determine SCG parameters for finite thin specimens:
Realistically (experimentally) forn≥20 andT ≥5 and
analytically forn≥10 andT >3.3.

5. Conclusions
The effect of specimen thickness on the estimation
of SCG parameters of brittle materials subjected to
constant stress-rate flexural testing was determined
by using a two-dimensional numerical solution. The
numerical solution showed that the change in crack
shape at failure was significant, forming considerable
elliptical crack configurations particularly at both low
stress rate and lowT . Notwithstanding the significant
change in crack shape together with appreciable crack
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growth, the difference in SCG parameters between the
two-dimensional numerical solution and the conven-
tional, one-dimensional infinite-body analytical solu-
tion was negligible with a maximum error of about 5%
for T >3.3 (the initial crack size is less than 30% of
the specimen thickness) withn≥10. The experimental
data obtained from constant stress-rate flexural testing
for soda-lime glass microslides with a limited range of
T =5–70 supported the numerical solutions within the
experimental range employed.

Appendix: Expressions of H, Q and F
The functionsH , Q and F are expressed as follows
[13]:

For the function H:

H = H1+ (H2− H1) sinpφ (A1)

where

H1 = 1− 0.34
a

w
− 0.11

a

c

(
a

w

)
H2 = 1−

(
1.22+0.12

a

c

)(
a

w

)

+
[

0.55−1.05

(
a

c

)0.75

+ 0.47

(
a

c

)1.5
](

a

w

)2

p = 0.2+ a

c
+ 0.6

a

w

For the function Q:

Q = 1+ 1.464

(
a

c

)1.65

(A2)

For the function F:

F =
[

M1+ M2

(
a

w

)2

+ M3

(
a

w

)4]
fφg fb (A3)

where

M1 = 1.13− 0.09

(
a

c

)
M2 = −0.54+ 0.89

0.2+ (a/c)

M3 = 0.5− 1.0

0.65+ (a/c)
+ 14

(
1.0− a

c

)24

fφ =
[(

a

c

)2

cos2 φ + sin2 φ

]1/4

g = 1+
[

0.1+ 0.35

(
a

w

)2
]

(1− sin φ)2

fb =
[
sec

(
πc

2b

√
a

w

)]1/2

The crack geometry factorY, Equation 5, is ex-
pressed

Y = H F√
Q

(A4)

During slow crack growth botha andc are changing
with time, hence,Y is a very complex function of time
so that the only solution of slow crack growth is to
use a numerical analysis on the basis of the governing
differential equations.
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